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Abstract 

The presence of two species in the same environment with a common limiting 
resource is paradoxical if competition for the limiting resource is the only con- 
sideration: One or the other of the species must be eliminated. This analysis 
shows that a normally unsuccessful competitor for the limiting resource may 
persist when there is a predator on the otherwise successful species. The modified 
assumption and different parametric values which are considered do not alter 
this generalization. The working model is of bacteria growing in a chemostat; 
however, there is no reason to assume the resultant conclusions are restricted to 
a bacterial system, an experimental situation, or terrestrial organisms. 
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A Mathematical Model of the Effect of 

a Predator on Species Diversity 

1. Introduction 
In sampling alien soils with life-detection instrumenta- 

tion, it is a basic assumption that the biological phe- 
nomena which apply on earth are applicable universally. 
One of the striking features of terrestrial soils is the 
great diversity of microbial species present, many of 
which have overlapping nutritional requirements. Even 
a partial overlap in nutrient needs between two microbes 
in a given environment challenges the competitive ex- 
clusion principle, an ecological generalization that no 
two species can coexist indefinitely when they require a 
common limiting resource. 

Drawing examples from higher organisms, Paine 
(Ref. 1) suggested that predators play an important role 
in maintaining species diversity. He reasoned that since 
predators reduce the number of individual prey organ- 
isms in a population to the level where they cannot 
fully exploit their potential resources, resources never 
limit population growth in the presence of the predators. 
The further implication is that another species which 
would have been excluded in competition for the resource 
may enter the environment and exist on an unexploited 
residue of resource. 

The predator’s postulated role of controlling the amount 
of species diversity is obviously of general theoretical 

interest. Thus, we have tried to determine its validity 
based on more explicit assumptions than those expressed 
by Paine or Spight (Ref. 2) in his subsequent critical 
paper. Our working model consists of bacteria growing 
in a chemostat. We believe, however, that basically 
the model is restricted to neither bacterial systems nor 
experimental situations. Some limitations of the model 
and some possible modifications are discussed in 
this report. 

II.  Operation of the Chemostat 
The chemostat is a constant-volume culture vessel 

wherein the specific growth rate p is regulated by the 
rate at which fresh nutrient S is introduced. The variable 
D is the dilution rate, or the ratio of the rate of nutrient 
input f to the culture volume V; i.e., D = f/V. The cul- 
ture volume is maintained constant by removing fluid 
(including a proportionate number of cells) at the same 
rate as nutrient solution is introduced. Hence, the bac- 
terial population x is regulated by the difference between 
the population growth and removal, 

dx - = ~ - D x  dt 
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At steady-state equilibrium, the specific growth rate is 
the same as the rate of dilution: 

The basic principles of chemostat culture and the steady- 
state mathematics were developed by Herbert, Elsworth, 
and Telling (Ref. 3). 

A bacterial population and the nutrient concentration 
in a chemostat will come to a unique equilibrium for a 
given dilution rate and nutrient input. The principal 
exception occurs when the dilution rate exceeds the 
maximum regeneration rate of the organisms. On the 
other hand, whenever two bacteria which have the com- 
mon resource are added together in the chemostat, they 
will not come to a steady-state equilibrium. One or the 
other of the species will be displaced in competition for 
the limiting nutrient (see, for example, Ref. 4); thus, in 
time, the culture reverts to the steady state with a single 
consumer. An analogous competitive situation with 
higher organisms (beetles) has been demonstrated by 
Park (Ref. 5). 

It is the purpose of this study to determine what 
happens to the steady-state concentration of nutrient in 
the chemostat when a predator, such as an amoeba, is 
introduced, which has the normally successful bacterial 
competitor as its sole resource. In particular, we have 
sought conditions under which an increase in nutrient 
would result, permitting the normally unsuccessful bac- 
terial species to coexist. 

In the subsequent discussion, frequent reference is 
made to population level (size, concentration, number). 
It should be understood that all calculations are based 
on weight (in milligrams) per unit volume (in liters), 
where weight is the aggregate weight of the population 
(biomass). The discussion is qualitatively accurate for 
numbers of individuals, although a rigorous discussion 
would account for the distribution of individual size and 
for changes of mean size with age of culture. 

111. Assumptions and Mathematics Governing 
the Growth Model 

The analysis of the interactions of the predator and 
consumer populations and their resources can be con- 
veniently considered in two parts: first, the development 
of a basic set of differential equations which describe 

the interactions with the specific growth rates (treated 
as undefined variables); second, a description of the spe- 
cific growth rates as they are affected by population 
density and nutrient concentration. 

A. Governing Differential Equations 

Let s, be the initial concentration of the limiting 
nutrient S in the inflowing medium, and s the concen- 
tration of this nutrient in the chemostat environment. Let 
x1 be the concentration of bacterium X ,  with the specific 
growth rate pt and xz the concentration of bacterium 
X ,  with the specific growth rate p,. Both X ,  and X, have 
the common requirement of resource S. Let y be the con- 
centration of the predator Y, which has bacterium X, as 
its limiting resource, with the specific growth rate of 
Y in the culture. 

During a very small time interval At, the population 
x, gives rise to x,plAt new cells per unit volume, while 
an amount of X, proportional to x,, D, and At  is removed 
from the culture vessel; i.e., -x, DAt. Also, another 
amount of X ,  is consumed by its predator Y. The con- 
version of x, to y, occurs with some yield factor c,. The 
remaining fraction of x1 is oxidized into small molecular 
waste products to serve energy metabolism. Thus, the 
change of x1 as a result of predation during the interval 
At is ( - h y / c V )  At; hence, the variation of x1 during the 
interval A t  is 

AX, = plxlAt - DqAt  - &!.At 
c, (3) 

Similarly, one can obtain the variations of x, and y as 
follows : 

During the same interval, a concentration s,. of the lim- 
iting nutrient substrate enters the culture vessel at a 
specific dilution rate, while a concentration of s leaves 
at the same rate. Furthermore, a certain amount of 
nutrient is consumed by X ,  and Xn. Hence, the total 
change of the limiting nutrient is 

where c, and cz represent the yield factors of s to X, and 
s to xn, respectively. 
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Dividing both sides of Eqs. (3-6) by At and taking the 
limit as At approaches zero, a system of differential equa- 
tions can be obtained as follows: 

B. Specific Growth Rate 

Any realistic model of population growth must provide 
that the growth rate of the organisms be a function of 
population size and nutrient concentration. At the ex- 
tremes, failure to account for population size would 
allow the population size to become greater than the 
physical environment, while neglect of nutrient concen- 
tration would allow growth to occur with no nutrients 
present. These limitations in some growth models have 
been examined by Smith (Ref. 6) .  

The function describing the relationship between 
growth rate and nutrient concentration should have such 
properties that (1) no growth takes place without nutri- 
ent, and (2) the rate approaches a maximum value at 
elevated concentrations. The need for item (1) is self- 
evident; item (2) expresses the experimental observation 
that it is possible to provide resources at concentrations 
in excess of the organisms’ needs-where no increase in 
growth rate would result from added nutrients. 

The relation between growth rate and population size 
must be one where growth is strongly inhibited as pop- 
ulation density approaches some maximum, but affected 
negligibly when there are few organisms. 

Monod (Ref. 7) showed that the specific growth rate 
for bacteria is an increasing function of the concentra- 
tion of the nutrient S of the form 

where is the maximum value of p at saturation level 
of the nutrient substrate and k an affinity constant. Equa- 
tion (11) has been successfully applied to scores of 
experiments. Figure 1 illustrates the nature of this func- 
tion and the relation of k to the maximum growth rate. 

This formulation satisfies the conditions already dis- 
cussed. Additionally, the constant k expresses differing 
abilities of organisms to utilize nutrients a t  low concen- 
trations. This last quality is the prime consideration 
governing survival of one or the other species in pure 
competition; that is, it will determine the interaction 
between two organisms based solely on their mutual 
need for a common resource, without any other ecologi- 
cal factor (such as predation). 

It is well recognized that continued growth, even with 
an excess of nutrients, is limited at elevated population 
densities. The mechanism for this self-inhibition of the 
population is seldom known, but in a bacterial culture 
it is usually attributed to accumulation of metabolic 
byproducts. 

In this study, the growth rate is considered not only 
as a function of s but of population density; thus 

SATURATION pm 

RESOURCE CONCENTRATION I 

Fig. 1. Relationship between specific growth rate p 
and resource concentration s 

JPL TECHNICAL REPORT 32-1359 3 



in which pml is the maximum value of p for xl, and 

J -m 

(14) 

with +(xl) being the Gaussian (or Normal) distribution 
function, and mean value M ,  and standard deviation V, 
being constant parameters associated with a speciiic 
organism. The limitations of this formulation are dis- 
cussed later. 

The function P (x,; M,,  a,) has the property that it 
approaches one at low values of x1 and tends toward 
zero at high values of x,. The mean value M ,  and 
standard deviation ax can be adjusted so that P (2,; M I ,  ul) 
can approximate the experimental result for a specific 
organism. More precisely, M ,  represents the population 
concentration at which +[(xl - Ml)/a,] = 0.5 for x1 = 
M , ,  while U, represents the bandwidth over which 
+[(x, - M , ) / a , ]  decreases from near one to near zero 
(called dispersion). The magnitude of u1 indicates how 
fast P (x,; M,,  u,) decreases from near one to near zero. 
The following is a tabulation of the Gaussian distribution 
function +[(xl - M l ) / a , ]  as a function of x,. 

In  Fig. 2, P (x,; M , ,  u,) is plotted against x1 for some 
specific mean values M ,  and standard deviations u,. For 
a given x,, M , ,  and v,, +[xl - M l ) / a , ]  can be obtained 
from the Biometrika table for statisticians (Ref. 8). 

Another consideration governing the specific growth 
rate is the existence of an endogenous metabolism that 

continues even in the absence of growth. It is considered 
in the present study as a constant B,. Hence, the specific 
growth rate of the three organisms (x,, x2, and Y )  can be 
expressed as 

where pm2 and bv are the maximum values of p for x2 
and y, respectively. 

The differential equations of the three-component 
system can be obtained from Eqs. (7-10) by setting 
x 2  = 0. This yields 

dxi - &Y - - xl(pl - D) - - 
dt CIJ 

dY 
= Y(B - D) 

p1X1 -- ds - D(s, - s) - - 
dt C l  

i\ 

The dynamic response of these two systems is examined 
in this study. 

IV. Numerical Analysis 

A. Numerical Solution of Dynamic Response 

Equations (7-10) are a set of first-order nonlinear dif- 
ferential equations belonging to the initial value prob- 
lem. The numerical method of solution for the initial 
value problem is to convert a set of differential equations 
into a set of difference equations (schemes) and then 
to perform step-by-step integration. 

There are several techniques available for the approxi- 
mate solution of such a set of differential equations by 
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Fig. 2. Illustration of the effect of M and u on the P function 

numerical methods. In this study, the technique of the 
fourth-order Adams-Moulton predictor-corrector method 
is employed with the classical fourth-order Runge-Katta 
method used for starting. Further discussions of numer- 
ical methods can be found in Refs. 9 and 10. 

The difference scheme is coded into a program for 
the 7094 computer. 

where the expression with a bar represents the value 
at the steady state, and 

B. Steady-State Solution 

The steady-state solution is obtained by setting the 
derivatives of all variables to zero. 

Hence, it follows from Eqs. (7-10) and (15-17) that 

q / . 2  - D) = 0 (25) 

The steady state (XI, ?Z2, ij, $) can be obtained by sub- 
stituting Eqs. (27-29) into Eqs. (23-26). It can be seen 
that several possible steady states exist. For example, 
one of the steady states is Z2 = 0, Fl > 0, B > 0, > 0; 
another steady state is Xi = 0, f = 0, XZ > 0, S > 0, etc. 
However, we are most interested in the steady state at 
which all the variables coexist. 

It is unlikely that the steady state of the coexistence 
of four variables can occur at high values of xl, xz, and y. 
This follows from our setting Mi = M, = M, = 350mg/P 
andvl=uz= u,= 50 mg/P in this study. It can be seen 
from Fig. 2 that P(?,; MI, ul) N 1 for Z1 < 200 mg/R. 
Therefore, we assume P(.i;  Mi, ul) = 1, P(%; M,, UZ) 1 
and P(@ M,, a,) = 1, and solve for Zl, Z,, and V as 
follows : 
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- CvT1  After expanding Eqs. (7-10) into a Taylor's series 
about a steady state &, Z,, jj, Z) and retaining only the 
first-order terms of Ax1, Ax,, As, and Ay, one can obtain 
the following results by using Eqs. (39a39d). 

y = -(F1- 0) 
Pv 

D(s,  - S) - - 

(32) 

' 

CI 

-- dAxl - all Ax, + a,, As + a13 Ax, + a14 Ay 

-- 'As - 6 1  Axl -I- a,, AS -I- 

(33) 
dt 

(404 In case any of I, ,  XZ, and ij obtained from Eqs. (30-33) 
is greater than 200 mg/l, the steady state (Zl, Z,, ij, S) 
should be solved numerically directly from Eqs. (23-29). 
Similarly, the coexistence steady state of the three- dt 
variable system is 

Ax, 4- &4 A y  

(40b) 

where where 

-- day - a41 Axl + a4, A s  + a43 Ax, + a44 Ay dt 
(404 

C. Stability Criterion of the Steady State a13 = 0 
The fact that a steady state is possible does not auto- 

matically imply that the system will ever reach this 
state (see, for example, Ref. 11). It is extremely important 

not, so that we may know if the system will reach that 
steady state. From the stability analysis, one can predict 

a14 = - (L + g 2 )  
a,, = - 1 (jl + F~ E) 

( 4 W  

(41e) 

c, 

to know whether the steady state of interest is stable or 

C1 

under what circumstances or with what parameter 
values (such as dilution rate, resource concentration, 
etc.) a steady state of interest is stable. Conditions 
for the stability of any possible steady state are given 

1 - a,, 1 - a;, D + - x 1 - + - x , -  c1 as c2 ax, 

(4W 
explicitly as follows: 1 

Let 

x1 = 2, 4- Ax1 

s = s + A s  
a31 = 0 (41i) 

6 JPL TECHNICAL REPORT 32-1359 



a34 = 0 

- a& 
= y - axl 

a,, = 0 

= 0 

= y - + ,i& - D - a/*, 
a Y  

(411) In other words, the real parts of all the roots of the 
characteristic equation, say A,, A,, A3 and A,, are negative 
where the characteristic equation is ( 4 1 4  

all - A a12 a13 I a,, a,, - A aZ3 I = 0 (44) 
a3, a33 - A a34 

with jil, Fz, &, being given in Eqs. (27-29) and aF1/axl 
representing the partial derivatives of with respect to 
x,, evaluated at the steady state. 

Equation (44) can be solved numerically, for a given 
steady state (Xi, X,, ij, 3, to obtain the four roots of A, 
whereas aij (i = 1,2,3,4; i = 1,2,3,4) are given explicitly 
in Eqs. (41), (4% (27), (28), and (29). Similar definitions apply for a g a s ,  aj.&/ax,, a&Jas, etc. 

These quantities can be obtained as follows: 
It should be mentioned that if any of the roots are 

complex but all with negative real parts, the steady state 
is stable but with damped oscillation. 

X exp [ - f (" ] (42a) The stability criterion can also be obtained without 
solving the eigenvalues. Equation (44) can be written as 

P(% M i ,  ai) (42b) a fourth-order polynomial in A: kl 
as (k, + 5 ) ~  

a,A4 + alh3 + azA2 + a3A + a, = 0 (45) 

for a, > 0. According to the Routh-Hunvitz criterion, 
all the roots of A have negative real parts if and only if 
the following determinantal inequalities hold: 

x exp [ - g (" ~ ~ ~ 2 ) '  ] (424 

- aiG = k2 P(G;  M z ,  uz) (42d) as bz (k, + q z  

a, - - ~- 
1 a1 1 > o  

1 - 
X1 

a Y  bv k, + Z1 ( 2 ~ ) ~ u ~  6 

x exp[ - +  (-)'I (42e) I 

It can be shown that the steady-state solution (Zl, Z2, 
S, 5) is stable if and only if the real parts of all the 
eigenvalues of matrix A are negative (Refs. 12 and 13), 
where 

I a3 0 * I  

The stability analysis in this section is quite general. 
It can be generalized to the system with any number of 
resources, preys, and predators. 
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Fig. 3. Equilibrium level of species XI and its limiting 
resource S when there is  no competition for the resource 
and no predation 
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Fig. 5. Increased level of resource S when predator Y preys upon X, (three-variable system) 
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V. Numerical Results 

The numerical results for the following set of 
values are plotted throughout this section, unless other- 
wise stated. 

D = 0.1 h-' 

s7 = 200mg/R 

B,  = B ,  = By = 0.01 h-, 

bl = 0.5 h-', pm2 = 0.25 h-I, pmy = 0.25 h-l 

k, = 20 mg/R, k, = 35 mg/R, h, = 30 mg/l 

c1 = co = cy = 0.5 

M, = M, = M, = 350mg/R 

U, = U~ = uY = 50mg/R 

When x,  and y are set at zero for the initial condi- 
tions, the standard chemostat equilibrium for 2, and S is 
obtained (Fig. 3). When X ,  is added at the concentration 
of i,, X ,  begins to decrease as it is deprived of some 
nutrients used by Xz; but it soon returns to its original 
level; while Xz is washed out of the system in agreement 
with the expectation of competitive exclusion (Fig. 4). 
When Y is added at 1/100 the concentration of Zl, the 
three-variable system begins to oscillate with a damped 
period and finally arrives at a coexistence steady state 
(Fig. 5). It is found from the stability analysis that this 

120 

50 

------- . . . . . . . . . . -. 

40 

30 

20 

10 
0 50 100 I 50 2( 

TIME, h 

I - 
Y 

1 

---- 
........ x 

Fig. 6. Coexistence steady state of X ,  and X ,  when X ,  
i s  preyed upon by Y (four-variable system) 

is a stable steady state. Note that s never falls back to 
its original level. Now, with addition of X B ,  again at the 
concentration of Zl, the four-variable system rapidly 
stabilizes at a coexistence equilibrium. Again, this is a 
stable steady state (Fig. 6). 

A. Effect of B,, B,, and 6, 

When values of B,, B,, and By are decreased to 0.001 
h-l, the three-variable system begins to oscillate with a 
regular undamped period of 40 h (Fig. 7);  it is found from 
the stability analysis that the system has no stable steady 
state. If B,, B,, and By are zero, the system oscillates at 
the same period but with higher amplitudes. Again, the 
system has no stable steady state (Fig. 8). However, with 
these changes of B,, B,, and B ,  the four-variable system 
still converges to the coexistence steady state, which is 
stable, according to stability analysis. 

B. Change of Dilution Rate 

If the dilution rate D is reduced to 0.07 h-l, the three- 
variable system has no steady state and oscillates with a 
period of 40 h (Fig. 9), but the four-variable system is 
stable at the coexistence steady state, which is achieved 
after several damped oscillations (Fig. 10). When D is 
increased to 0.15 h-I, the three-variable system becomes 

1001 I I I 

~ -\ . \ .  \ :  , :,' : 

. .  
* .  - .  
. .  ... *. f 

I 2: 
TIME, h 

Fig. 7. Effect of level of endogeneous metabolism B 
on three-variable system when B =0.001 
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XI 

---- 
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- 200 

Fig. 8. Effect of level of endogenous metabolism 6 
on three-variable system when 6 ~ 0 . 0  

Fig. 9. Effect of dilution rate D on three-variable 
system when D = 0.07 
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Fig. 10. Effect of dilution rate D on four-variable system a t  D =0.07 
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stable at the coexistence steady state and converges 
quickly (Fig. ll), while the four-variable system has no 
stable coexistence steady state. In this case X, cannot 
persist in the system. Hence, as X ,  is washed out, the 
system converges (Fig. 12) to the same steady state as 
the three-variable system (Fig. 11). 

C. Changed Input Substrate Concentration 

If s, is decreased to 150 mg/L, the three-variable sys- 
tem converges quickly to the coexistence steady state 

(Fig. 13), while the four-variable system becomes un- 
stable at the coexistence steady state. Again X, is lost 
from the system and the system converges to the same 
steady state as the corresponding three-variable system 
(Fig. 14). When s,. is increased to 250 mg/L, the three- 
variable system has no stable steady state and oscillates 
at a regular period of 40 h (Fig. 15), while the four- 
variable system is stable at the coexistence steady state 
(Fig. 16). 

To summarize, with this particular set of parameters, 
it is found that the four-variable system is always stable 
at one of the possible steady states, while the three- 
variable system may stabilize, but more frequently it 
exhibits considerable oscillations (none of the possible 
steady states is stable). 

VI. Discussion 

Based upon our assumptions and under the conditions 
tested, we have demonstrated that there is a theoretical 
expectation that (1) the level of resource concentration 
rises when the consumer population is reduced by pre- 
dation, and (2) an additional consumer can coexist with 
the original consumer utilizing the resources released by 
predation. These two observations are in full agreement 
with the suggestion by Paine. Moreover, we have seen that 
the presence of the second consumer stabilizes a predator- 
prey association which otherwise might oscillate. 

TIME, h 

Fig. 11. Effect of dilution rate D on three-variable 
system when D ~ 0 . 1 5  
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TIME, h Fig. 12. Effect of dilution rate D on four-variable system. 
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Fig. 13. Effect of input resource concentration s, on 
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Fig. 14. Effect of input resource concentration sr on four-variable system (note 
that Xz i s  unsuccessful at  sr = 150 mg/8,  reverting to three-variable system) 

To what degree do these conclusions depend upon 
the foregoing conditions and assumptions? Before examin- 
ing the specific assumptions, we must consider more 
generally the conditions which will lead to coexistence. 
Regardless of the mechanism and interactions which may 
be involved, the persistence of a species in an environ- 
ment depends fundamentally upon whether the replace- 
ment of the population by reproduction, growth, and 
immigration is equal to loss from all causes (predation, 
old age, disease, emigration, etc.).* 

A corollary of this observation is that a newly introduced 
species can become a permanent member of the com- 
munity only if its intrinsic growth exceeds its loss. This 
.~ 
*Temporarily, population gain may exceed the losses or vice 
versa; but in time, gains and losses must be equal. 

corollary does not predict how numerous the population 
will be at equilibrium (or whether a steady state will be 
reached-as opposed to oscillation), since rate of gain 
and rate of loss may be environmentally controlled, 
density dependent, or resource limited. However, failure 
of the introduced species can be predicted if: (1) there 
is no inoculum level at which growth can exceed losses, 
and (2) there is no interaction between the introduced 
species and the components of the environment (re- 
sources, competitors, predators, etc.) that can alter the 
environment such that the first proviso applies. Thus, in 
the chemostat, if X ,  maintains s at a level where pLn < D, 
then Eq. (8) has a negative value and X, will disappear. 
Any circumstance which alters the value of p or D for 
either of the two competitors will alter the prospect for 
coexistence. 
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Further discussion will concern which circumstances 
can lead to coexistence, as well as limitations in the 
model. 

A. The Chemostat Model 

The most restrictive assumption of this analysis of 
predator-prey interaction lies in taking the chemostat as 

a model. Two important constraints result: First, primary 
resource in the chemostat model is renewed at a rate 
independent of the level of resource in the environment. 
This might be the case of litter accumulating from falling 
leaves, but if the resource were taken to be foliage on 
the plant or aquatic algae, its regeneration should reflect 
a concentration dependence. For example, the differen- 
tial expression, Eq. (lo), might be replaced by: 

. . . . . . . . . . . . . 
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Fig. 15. Effect of input resource concentration sr 
on three-variable system Is, = 250 mg/L) 
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Second, the rate of removal of xl, x,, s, and y from all 
causes but consumption at the next higher trophic level 
is built into the value of the dilution rate D. In natural 
environments the rate of loss to other predators, such as 
disease, emigration, etc., would not be the same for s, 
xl, x2, and y. This limitation can be removed simply by 
specifying a unique D value, D,, D,, D,, D ,  for s, x,, x,, 
and y. 

It can be expected that the incorporation of these 
more general assumptions might alter the behavior of 
the model in several ways. Making the regenerating of s 
a function of its own concentration might: (1) introduce 
oscillations in the X1, S association, (2) partially or com- 
pletely dampen the X , ,  S, Y complex, and (3) alter period 
and amplitude of the XI, X2, S, Y complex. 

I 

Fig. 16. Effect of input resource concentration S, on four-variable system (sr = 250 mg/L) 
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Applying specific values of D to each organism should 
lead to far more complex interactions and thus a larger 
variety of relations resulting in steady states, but should 
not alter the present observations that an additional 
consumer can coexist on resources released by preda- 
tion. Of course, these expectations need to be tested. 

8. Formulation of the P Function 

The P(x,; M, ,  a,) function has been defined generally 
as having the property that its values be near zero when 
populations are high and near one when populations are 
low, and defined specifically by Eq. (13). From an exami- 
nation of how P(x,; M,,  u,) affects the model interactions, 
the probable effect of functions other than the one we 
have used can be deduced. 

From the view of the introduced consumer X z ,  the 
most important effect of P(x,; M1, a,) is in limiting the 
rate at which S is consumed by XI. As previously noted, 
a steady state is reached when pl equals D. If p1 is not 
to be depressed as P(x,;  MI, u,) is lowered (increased 
population inhibition), the equality in Eq. (15) must be 
maintained by an increase in S. The increased level of s 
will result in a higher pz. If p, > D as a result of higher 
s, then X ,  will grow in the system. In general, under con- 
ditions of crowding that lead to pz > p,, there may be 
coexistence of X ,  and X,. 

For a given D, and not considering the effect of P(x,;  
M,,u,), the value of x, will depend upon the relative 
magnitude of k, and k,. 

To determine the effect of varying P(x, ;  M , ,  a,), we 
may consider two functions of P(x , ;  M, ,  u,), where both 
have some low value [e.g., P(x,; M,, a,) = 0.011 at the 
same level of crowding of X,. That is, the growth of X ,  
is nearly completely inhibited at the same population 
density with either function. However, the first passes 
from near 1 [e.g., P(x,;  M I ,  a,) = 0.991 to 0.01 over a 
narrow range of values of I,, while for the second, the 
transition of P(xI ;  M , ,  u,) from 0.99 to 0.01 begins at a 
lower concentration of x1 and takes place over a broader 
ranger of concentrations. 

In general, the lower the value of x1 at which P(x,; M1, 
ul )  departs significantly from 1 the more likely it is that, 
€or any value of s,., coexistence will result. Furthermore, 
the higher the value of s,., regardless of the nature of 
P(x,; M,, u,), the more likely that P(x,; M,, a,) departs 
from 1 and that X ,  and X ,  coexist. As cls, approaches the 
limiting population of X1, then P(x,; MI, a,), approaches 
0; hence, the probability of coexistence increases. 

In conclusion, the incorporation of P(x,;  MI, a,) deter- 
mines that there will be some level of s,. where pz > D, 
that is, where x, can coexist with x,, while the specific 
nature of P(x,; M1, 0,) determines the range of s,. values 
over which coexistence can occur. Except where a par- 
ticular, natural association is being modeled, our con- 
clusions are unaffected as long as P(x,; MI, ax) is a 
function that satisfies the transition from one to zero. 

C. The Formulation of Growth Rate 

As with P(x,; M,, a,), the general characteristics of p 
are more important than the particular formulation. If 
p were a constant at all values of resource, interactions 
between consumers would be governed solely by P(x,; 
M,, a,); specifically, coexistence would only become pos- 
sible at relativeIy high population densities. On the other 
hand, different p functions, which displayed the trans- 
ition from zero in the absence of resource to some 
maximum at all large concentrations of resource, would 
all lead to the type of predator-consumer-resource inter- 
actions we have studied. As with P(x,;  M , ,  uI), the partic- 
ular function for p will determine the particular 
concentrations with which continuous oscillation, steady- 
state coexistence, or exclusion will occur. 

D. Deterministic vs Stochastic Solutions 

The stated solution for the predator-consumer-resource 
interaction is, of course, oversimplified. Other predators, 
alternate prey, other consumers, behavioral modifica- 
tions (mimicry, hiding, diurnal rhythms, defense pos- 
tures), and environmental fluctuations would influence 
the outcome of competition or predation in almost any 
natural community. 

To introduce any additional biological interactions 
would be to establish a new problem with a new set of 
descriptive equations. However, random fluctuations of 
temperature, available water, oxygen, and other environ- 
mental parameters could be expected to alter the value 
of different constants within the context of the present 
formulation. Such fluctuations might be amplified and, 
in certain cases, they might set up resonances which 
would upset a system thought to be stable from deter- 
ministic analysis (Ref. 14). Thus, the added realism of 
a stochastic model and the expectation of significant 
interactions from random perturbations are strong argu- 
ments for reanalyzing the model with stochastic processes. 

Our conclusions conflict with those of Spight, who 
argued that the preyed-upon population can alter its 
rate of resource utilization in such a way that the level 
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of resource remains unchanged even in the presence of 
a predator. He concluded that “. . . additional factors 
must be invoked to explain the existence of the resources 
which support . . . additional species,” since “. . . prey 
populations apparently make the required response to 
different schemes and intensities of predation” (Ref. 2). 
To what extent does our formulation of the growth model 
conform to his expectation that organisms “. . . make the 
required response . . .” to predation, such that their utili- 
zation of resources is constant regardless of population 
density? 

If s is to be constant, Eq. (20) must be valued at zero 
for all values of xl. This requires that plxl/cl has a 
constant value since D and sD. are constant. Since x1 is 
clearly a variable, the values of c1 or pl (or both) would 
have to be compensating variable functions of xl. 

The yield factor c1 is probably around 0.5 at its maxi- 
mum for microorganisms, and lower for more complex 
forms. If c1 were to vary with population density to satisfy 
plxl/cl = constant, it would have to have its maximum 
value at the maximum population, and decrease with 
lower populations. Thus, when x1 is at one hundredth of 

its maximum population, then c1 = 0.005. Such a low 
conversion yield factor is not observed. In fact, c1 is 
experimentally observed to be nearly constant over wide 
population levels, and the variation which is observed is 
in the opposite direction; i.e., at higher population, the 
yield is lower. (See, for example, Ref. 15.) 

Thus, only if p1 varies inversely with x,  can we satisfy 
the condition that plxl/cl is invariant with xl. Indeed, 
at high population densities, such a relation (or one 
similar) must apply, since it is demonstrable experimen- 
tally that growth rate approaches zero as an upper 
population limit is appproached. However, the implica- 
tion of the inverse function for low population (that pl 
can increase without limit) is biologically unacceptable. 
Rather, the observation is that at any low population a 
maximum growth rate b1 is approached providing only 
that all resources are made available in excess. Thus, we 
have chosen to represent growth as a function of nutrient 
concentration and population density, so that the growth 
rate is sensitive to s at low nutrient levels and sensitive 
to x1 at high population levels. The assumptions which 
would support Spight’s conclusions are apparently not 
biologically valid. 

Nomenclature 

B 

C 

D 

k 

M 

P 

S 

S 

ST 

endogenous metabolism which continues in the 
absence of growth 

yield or conversion factor 

dilution rate 

an “affinity” constant expressing differing abili- 
ties of organisms to utilize nutrients at low con- 
centrations 

mean value of 4 

population density function whose value varies 
between 0 and 1, depending on concentration of 
the bacterial population 
limiting nutrient 

concentration of limiting nutrient in the culture 

concentration of the nutrient substrate entering 
the culture (resource) 

V culture volume 
X species of bacterium 
x concentration of bacterial population in culture 

medium 

Y predator organism 

y 

p specific growth rate 
5 standard deviation of 4 
(p Gaussian distribution function 

concentration of predator in culture medium 
(predator population) 

Subscripts 
m maximum 
y pertaining to predator Y 
1 
2 

pertaining to prey bacterial species X 
pertaining to competitor bacterial species X 
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